Symmetries and their Lie algebra properties for the higher-order Burgers equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 223743
(http://iopscience.iop.org/0305-4470/22/18/014)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 06:59

Please note that terms and conditions apply.

# Symmetries and their Lie algebra properties for the higher-order Burgers equations 

Tao Sun $\dagger$ and Wei Wang<br>Physics Department, Liaoning Normal University, Dalian, People’s Republic of China

Received 28 July 1988, in final form 16 May 1989


#### Abstract

A new strong symmetry, two groups of symmetries and their Lie algebra properties for the higher-order Burgers equations are presented.


## 1. Introduction

In the preceding paper (Tao Sun 1989) we discussed the symmetries and Lie algebra properties of the Burgers equation. A new class of symmetries has been found. It is known that the Burgers equation has two strong symmetries $\Phi$ and $\Psi$ (Tian Chou 1987)

$$
\begin{align*}
& \Phi=\mathrm{D}+u+u_{x} \mathrm{D}^{-1}  \tag{1.1}\\
& \Psi=2 t \Phi+x+\mathrm{D}^{-1} \tag{1.2}
\end{align*}
$$

and three groups of symmetries

$$
\begin{array}{ll}
K_{n}=\Phi^{n} K_{0} & K_{0}=u_{x} \\
\tau_{n}=\Phi^{n} \tau_{0} & \tau_{0}=2 t u_{x}+1 \\
u_{n}(\varepsilon)=\Psi^{n} \mu_{0}(\varepsilon) & \mu_{0}(\varepsilon)=(u-\varepsilon) \exp \left(-\mathrm{D}^{-1} u+\varepsilon x+\varepsilon^{2} t\right)
\end{array}
$$

where $n=0,1,2, \ldots$.
In this work we discuss the symmetries of the higher-order Burgers equation

$$
\begin{equation*}
u_{t}=K_{l}=\Phi^{\prime} u_{x} \quad l=1,2, \ldots \tag{1.6}
\end{equation*}
$$

where $\Phi$ is given in (1.1). To our knowledge, very little is known about the symmetries of this set of equations, except that $\Phi$ has been proved to be a strong symmetry of them (Tian Chou 1987). In the following we show that there exists a strong symmetry $\Psi_{l}$ and two groups of symmetries $\kappa_{n}^{(1)}(\varepsilon)$ and $\mu_{n}^{(1)}(\varepsilon)$. Their Lie algebra properties have also been identified.

## 2. Strong symmetry

Theorem 2.1. The operator

$$
\begin{equation*}
\Psi_{l}=(l+1) t \Phi^{\prime}+x+\mathrm{D}^{-1} \quad l=1,2, \ldots \tag{2.1}
\end{equation*}
$$

is a strong symmetry for the $l$-order Burgers equation (1.6).

[^0]Proof. From (2.1) we have

$$
\begin{aligned}
& \mathrm{d} \Psi_{l} / \mathrm{d} t=(l+1) \Phi^{\prime}+(l+1) t \mathrm{~d} \Phi^{\prime} / \mathrm{d} t \\
& {\left[K_{l}^{\prime}, \Psi_{l}\right]=(l+1) t\left[K_{l}^{\prime}, \Phi^{\prime}\right]+\left[K_{l}^{\prime}, x+\mathrm{D}^{-1}\right] .}
\end{aligned}
$$

Since $\Phi$ is a strong symmetry, $\Phi^{\prime}$ is also a strong symmetry (Tian Chou 1987), i.e.

$$
\mathrm{d} \Phi^{\prime} / \mathrm{d} t=\left[K_{l}^{\prime}, \Phi^{\prime}\right] .
$$

Next, notice that (Tian Chou 1987):

$$
\left[K_{l}^{\prime}, x+\mathrm{D}^{-1}\right]=(l+1) \Phi^{\prime} \quad l=0,1,2, \ldots .
$$

Therefore

$$
\mathrm{d} \Psi_{l} / \mathrm{d} t=\left[K_{l}^{\prime}, \Psi_{l}\right]
$$

which means that $\Psi_{l}$ is a strong symmetry of the $l$-order Burgers equation (1.6).
Theorem 2.2.

$$
\begin{equation*}
\left[\Phi^{n}, \Psi_{l}\right]=n \Phi^{n-1} \quad n=1,2, \ldots ; \quad l=1,2, \ldots \tag{2.2}
\end{equation*}
$$

The proof is by induction of $n$. For $n=1$, we have

$$
[\Phi, \Psi]=\mathrm{l}
$$

Lemma 2.1.

$$
\begin{equation*}
\Phi^{\prime}\left[\left(x+\mathrm{D}^{-1}\right) a\right]=\left(x+\mathrm{D}^{-1}\right) \Phi^{\prime}[a]+\mathrm{D}^{-1} a+a \mathrm{D}^{-1} \tag{2.3}
\end{equation*}
$$

is valid for any function $a$.
Proof.

$$
\begin{aligned}
\Phi^{\prime}\left[\left(x+\mathrm{D}^{-1}\right) a\right] & =x a+\left(\mathrm{D}^{-1} a\right)+2 a \mathrm{D}^{-1}+x a_{x} \mathrm{D}^{-1} \\
& =\left(x+\mathrm{D}^{-1}\right) \Phi[a]+\mathrm{D}^{-1} a+a \mathrm{D}^{-1} .
\end{aligned}
$$

Lemma 2.2.

$$
\begin{align*}
& \left\{\left[\left(\mathrm{D}^{-1} a\right)+a \mathrm{D}^{-1}\right] \Phi^{n}+\left(\Phi^{n}\right)^{\prime}[a]\right\} b-\left\{\left[\left(\mathrm{D}^{-1} b\right)+b \mathrm{D}^{-1}\right] \Phi^{n}+\left(\Phi^{n}\right)^{\prime}[b]\right\} a=0 \\
& n=0,1,2, \ldots \tag{2.4}
\end{align*}
$$

is valid for any functions $a$ and $b$.
Lemma 2.3.

$$
\begin{gather*}
\left(X+\mathrm{D}^{-1}\right)\left\{\left(\Phi^{n}\right)^{\prime}[a] b-\left(\Phi^{n}\right)^{\prime}[b] a\right\}=\left(\Phi^{\prime \prime}\right)^{\prime}\left[\left(x+\mathrm{D}^{-1}\right) a\right] b-\left(\Phi^{\prime \prime}\right)^{\prime}\left[\left(x+\mathrm{D}^{-1}\right) b\right] a  \tag{2.5}\\
n=1,2, \ldots
\end{gather*}
$$

is valid for any functions $a$ and $b$.

The proofs of lemmas (2.2) and (2.3) are by induction on $n$.

Theorem 2.3. $\Psi$, is a hereditary symmetry, i.e.

$$
\begin{equation*}
\Psi_{[ }^{\prime}\left[\Psi_{l} a\right] b-\Psi_{l}^{\prime}\left[\Psi_{l} b\right] a=\Psi_{l}\left\{\Psi_{l}^{\prime}[a] b-\Psi_{l}^{\prime}[b] a\right\} \quad l=1,2, \ldots \tag{2.6}
\end{equation*}
$$

is valid for any functions $a$ and $b$.
Proof. Given (2.1), what we need to do is just prove

$$
\begin{equation*}
\left(\Phi^{\prime}\right)^{\prime}\left[\Psi_{l} a\right] b-\left(\Phi^{\prime}\right)^{\prime}\left[\Psi_{l} b\right] a=\Psi_{,}\left\{\left(\Phi^{\prime}\right)^{\prime}[a] b-\left(\Phi^{\prime}\right)^{\prime}[b] a\right\} \tag{2.6a}
\end{equation*}
$$

Since $\Phi$ is a hereditary symmetry, according to Tao Sun (1989, lemma 2.4) and (2.5), we obtain

$$
\begin{aligned}
\Psi_{l}\left\{\left(\Phi^{\prime}\right)^{\prime}[a] b-\right. & \left.\left(\Phi^{l}\right)^{\prime}[b] a\right\} \\
= & (l+1) t \Phi^{\prime}\left\{\left(\Phi^{\prime}\right)^{\prime}[a] b-\left(\Phi^{\prime}\right)^{\prime}[b] a\right\}+\left(x+\mathrm{D}^{-1}\right)\left\{\left(\Phi^{\prime}\right)^{\prime}[a] b-\left(\Phi^{\prime}\right)^{\prime}[b] a\right\} \\
= & \left(\Phi^{\prime}\right)^{\prime}\left[(l+1) t \Phi^{\prime} a\right] b-\left(\Phi^{\prime}\right)^{\prime}\left[(l+1) t \Phi^{\prime} b\right] a \\
& +\left(\Phi^{\prime}\right)^{\prime}\left[\left(x+\mathrm{D}^{-1}\right) a\right] b-\left(\Phi^{\prime}\right)^{\prime}\left[\left(x+\mathrm{D}^{-1}\right) b\right] a \\
= & \left(\Phi^{\prime}\right)^{\prime}\left[\Psi_{l} a\right] b-\left(\Phi^{\prime}\right)^{\prime}[\Psi, b] a .
\end{aligned}
$$

## 3. Symmetries

Lemma 3.1.

$$
\begin{equation*}
K_{n}^{\prime}[1]=(n+1) K_{n-1} \quad n=1,2, \ldots \tag{3.1}
\end{equation*}
$$

The proof is by induction on $n$.
Lemma 3.2.

$$
\begin{equation*}
\mathrm{d} K_{n} / \mathrm{d} t=K_{m}^{\prime}\left[K_{n}\right] \quad m=1,2, \ldots ; \quad n=0,1,2, \ldots \tag{3.2}
\end{equation*}
$$

Proof. Equation (3.2) implies that $K$ is a symmetry of the equation $u_{t}=K_{m}$. Since the strong symmetry $\Phi$ maps a symmetry to a symmetry, it is sufficient to prove (3.2) for $n=0$, i.e.

$$
\begin{equation*}
\mathrm{d} K_{0} / \mathrm{d} t=K_{m}^{\prime}\left[K_{0}\right] \quad m=1,2, \ldots \tag{3.2a}
\end{equation*}
$$

Equation (3.2a) is obviously true for $m=1$. Assume that it is established when $m=k-1$ and let us prove it for $m=k$. In fact

$$
\begin{aligned}
K_{k}^{\prime}\left[K_{0}\right) & =\Phi^{\prime}\left[K_{0}\right] K_{k-1}+\Phi K_{k-1}^{\prime}\left[K_{0}\right] \\
& =K_{0} K_{k-1}+\left(\mathrm{D} K_{0}\right)\left(\mathrm{D}^{-1} K_{k-1}\right)+\Phi \mathrm{D} K_{k-1} \\
& =\left(\mathrm{D}^{2}+2 u_{x}+u \mathrm{D}+u_{x x} \mathrm{D}^{-1}\right) K_{k-1}=\mathrm{D} K_{k}=\mathrm{d} K_{0} / \mathrm{d} t
\end{aligned}
$$

Let

$$
\begin{align*}
& \kappa_{0}^{(l)}(\alpha, \beta)=[\alpha(l+1) t+\beta] \Phi^{l-1} u_{x}+\alpha \\
&=[\alpha(l+1) t+\beta] K_{t-1}+\alpha  \tag{3.3}\\
& u_{0}^{(t)}(\varepsilon)=(u-\varepsilon) \exp \left(-D^{-1} u+\varepsilon x+\varepsilon^{l+1} t\right)  \tag{3.4}\\
& \kappa_{n}^{(l)}(\alpha, \beta)=\Phi^{n} \kappa_{0}^{(l)}(\alpha, \beta) \\
&=[\alpha(l+1) t+\beta] K_{t+n-1}+\alpha \Phi^{n} \mathrm{I}  \tag{3.5}\\
& u_{n}^{(l)}(\varepsilon)= \Psi_{l}^{n} \mu_{0}^{(l)}(\varepsilon)  \tag{3.6}\\
& l=1,2, \ldots \quad n=0,1,2, \ldots
\end{align*}
$$

where $\alpha, \beta$ and $\varepsilon$ are arbitrary constants independent of time and space.

Theorem 3.1. $\kappa_{n}^{(\prime)}(\alpha, \beta)$ and $\mu_{n}^{(I)}(\varepsilon)$ are symmetries for the $l$-order Burgers equation (1.6), i.e.

$$
\begin{align*}
& \mathrm{d} \kappa_{n}^{(1)}(\alpha, \beta) / \mathrm{d} t=K_{l}^{\prime}\left[\kappa_{n}^{(t)}(\alpha, \beta)\right]  \tag{3.7}\\
& \mathrm{d} \mu_{n}^{(l)}(\varepsilon) / \mathrm{d} t=K_{i}^{\prime}\left[\mu_{n}^{(\prime)}(\varepsilon)\right] . \tag{3.8}
\end{align*}
$$

Proof. In a similar way to the proof of lemma 3.2, what we need to do is just prove

$$
\begin{align*}
& \mathrm{d} \kappa_{0}^{(\prime)}(\alpha, \beta) / \mathrm{d} t=K_{/}^{\prime}\left[\kappa_{0}^{(\prime)}(\alpha, \beta)\right] \\
& \mathrm{d} \mu_{0}^{(\prime)}(\varepsilon) / \mathrm{d} t=K_{i}^{\prime}\left[\mu_{0}^{(\prime)}(\varepsilon)\right]
\end{align*}
$$

From (3.3) we have

$$
\begin{aligned}
& \mathrm{d} \kappa_{0}^{(l)}(\alpha, \beta) / \mathrm{d} t=\alpha(l+1) K_{l-1}+[\alpha(l+1) t+\beta] \mathrm{d} K_{l-1} / \mathrm{d} t \\
& K_{l}^{\prime}\left[\kappa_{0}^{(\prime)}(\alpha, \beta)\right]=[\alpha(l+1) t+\beta] K_{[ }^{\prime}\left[K_{l-1}\right]+\alpha K_{[ }^{\prime}[1] .
\end{aligned}
$$

According to (3.1) and (3.2), (3.7') is established.
For the case of $\mu_{0}^{(l)}(\varepsilon),\left(3.8^{\prime}\right)$ is obviously valid when $l=1$ (Tao Sun 1989). Assume it is valid for $l=k-1$, we prove that it is established for $l=k$. In fact

$$
\begin{aligned}
K_{k}^{\prime}\left[\mu_{0}^{(k)}(\varepsilon)\right] & =\left(\Phi K_{k-1}\right)^{\prime}\left[\mu_{0}^{(k)}(\varepsilon)\right] \\
& =\Phi^{\prime}\left[\mu_{0}^{(k)}(\varepsilon)\right] K_{k-1}+\Phi K_{k-1}^{\prime}\left[\mu_{0}^{(k)}(\varepsilon)\right] \\
& =\mu_{0}^{(k)}(\varepsilon) K_{k-1}+\left[\mathrm{D} \mu_{0}^{(k)}(\varepsilon)\right]\left(\mathrm{D}^{-1} K_{k-1}\right)+\exp \left[\varepsilon^{k}(\varepsilon-1) t\right] \Phi K_{k-1}^{\prime}\left[\mu_{0}^{(k-1)}(\varepsilon)\right] \\
& =\left\{K_{k}+(u-\varepsilon)\left[-\left(\mathrm{D}^{-1} K_{k}\right)+\varepsilon^{k+1}\right]\right\} \exp \left(-\mathrm{D}^{-1} u+\varepsilon x+\varepsilon^{k+1} t\right) \\
& =\mathrm{d} \mu_{0}^{(k)}(\varepsilon) / \mathrm{d} t
\end{aligned}
$$

which implies (3.8).

## 4. Preliminary theorems

Lemma 4.1.1.

$$
\begin{equation*}
\Phi \mu_{n}^{(l)}(\varepsilon)=\varepsilon \mu_{n}^{(l)}(\varepsilon)+n \mu_{n-1}^{(l)}(\varepsilon) \quad l=1,2, \ldots ; \quad n=0,1,2, \ldots \tag{4.1}
\end{equation*}
$$

The proof is by induction on $n$.
Theorem 4.1.

$$
\begin{align*}
& \Phi^{m} \mu_{n}^{(\prime)}(\varepsilon)=\sum_{r=0}^{m} C_{m}^{r}[n!/(n-r)!] \varepsilon^{m-r} \mu_{n-r}^{(1)}(\varepsilon)  \tag{4.2}\\
& l=1,2, \ldots \quad \quad m=1,2, \ldots \quad n=0,1,2, \ldots
\end{align*}
$$

Proof. From (4.1), (4.2) is valid for $m=1$. Assume that it is true when $m=k-1$, we prove it for $m=k$. In fact

$$
\begin{aligned}
\Phi^{k} \mu_{n}^{(\prime)}(\varepsilon) & =\Phi \Phi^{k-1} \mu_{n}^{(\prime)}(\varepsilon) \\
& =\sum_{r=0}^{k-1} C_{k-1}^{r}[n!/(n-r)!] \varepsilon^{k-r-1}\left[\varepsilon \mu_{n}^{(1)}(\varepsilon)+(n-r) \mu_{n-r-1}^{(\prime)}(\varepsilon)\right] \\
& =\sum_{r=0}^{k} C_{k}^{r}[n!/(n-r)!] \varepsilon^{k-r} \mu_{n-r}^{(\prime)}(\varepsilon)
\end{aligned}
$$

Lemma 4.2.1.

$$
\begin{align*}
& \mu_{n}^{(1)}(\varepsilon)^{\prime}+\mathrm{D}^{-1} \mu_{n}^{(1)}(\varepsilon)+\mu_{n}^{(l)}(\varepsilon) \mathrm{D}^{-1}=0 \\
& l=1,2, \ldots \quad n=0,1,2, \ldots \tag{4.3}
\end{align*}
$$

The proof is by induction on $n$.
Theorem 4.2.

$$
\begin{equation*}
\Phi^{\prime}\left[\mu_{n}^{(1)}(\varepsilon)\right]=\left[\mu_{n}^{(1)}(\varepsilon)^{\prime}, \Phi\right] \quad l=1,2, \ldots ; \quad n=0,1,2, \ldots \tag{4.4}
\end{equation*}
$$

Proof. For $n=0, \mu_{0}^{(l)}(\varepsilon)=\exp \left[\left(\varepsilon^{l+1}-\varepsilon^{2}\right) t\right] \mu_{0}(\varepsilon)$, so (4.4) is true by lemma 4.3 of Tao Sun (1989). Assuming it is established for $n=k-1$, we prove it for $n=k$. In fact, by (2.3), (4.2) and (4.3)

$$
\begin{aligned}
{\left[\mu_{k}^{(\prime)}(\varepsilon)^{\prime}, \Phi\right]=} & {\left[\left(\Psi_{i} \mu_{k-1}^{(l)}(\varepsilon)\right)^{\prime}, \Phi\right] } \\
= & (l+1) t \sum_{r=0}^{l} C_{l}^{r}[(k-1)!/(k-r-1)!] \varepsilon^{l-r}\left[\mu_{k-r-1}^{(l)}(\varepsilon)^{\prime}, \Phi\right] \\
& +\left[\left(x+\mathrm{D}^{-1}\right) \mu_{k-1}^{(l)}(\varepsilon)^{\prime}, \Phi\right] \\
= & \Phi^{\prime}\left[(l+1) t \Phi^{\prime} \mu_{k-1}^{(\prime)}(\varepsilon)\right]+\left(x+\mathrm{D}^{-1}\right) \Phi^{\prime}\left[\mu_{k-1}^{(l)}(\varepsilon)\right]-\mu_{k-1}^{(l)}(\varepsilon)^{\prime} \\
= & \Phi^{\prime}\left[\mu_{k}^{(l)}(\varepsilon)\right]-\left[\mu_{k-1}^{(l)}(\varepsilon)^{\prime}+\mathrm{D}^{-1} \mu_{k-1}^{(\prime)}(\varepsilon)+\mu_{k-1}^{(l)}(\varepsilon) \mathrm{D}^{-1}\right] \\
= & \Phi^{\prime}\left[\mu_{k}^{(l)}(\varepsilon)\right] .
\end{aligned}
$$

## Lemma 4.3.1.

$$
\begin{equation*}
\left(\Phi^{n}\right)^{\prime}\left[\mu_{0}^{(1)}(\varepsilon)\right]=\left[\mu_{0}^{(1)}(\varepsilon), \Phi^{n}\right] \quad l=1,2, \ldots ; \quad n=1,2, \ldots \tag{4.5}
\end{equation*}
$$

The proof is by induction on $n$.
Lemma 4.3.2.

$$
\begin{equation*}
\left[\mu_{0}^{(l)}(\varepsilon)^{\prime}, x+\mathrm{D}^{-1}\right]=0 \quad l=1,2, \ldots \tag{4.6}
\end{equation*}
$$

Proof. It is easy to check that (4.6) is established.
Lemma 4.3.3.

$$
\begin{equation*}
\Psi^{\prime}\left[\mu_{0}^{(i)}(\varepsilon)\right]=\left[\mu_{0}^{(\prime)}(\varepsilon)^{\prime}, \Psi_{l}\right] . \tag{4.7}
\end{equation*}
$$

Proof. Since

$$
\begin{aligned}
& \Psi^{\prime}\left[\mu_{0}^{(l)}(\varepsilon)\right]=(l+1) t\left(\Phi^{\prime}\right)^{\prime}\left[\mu_{0}^{(\prime)}(\varepsilon)\right] \\
& {\left[\mu_{0}^{(\prime)}(\varepsilon)^{\prime}, \Psi_{l}\right]=(l+1) t\left[\mu_{0}^{(\prime)}(\varepsilon)^{\prime}, \Phi^{\prime}\right]+\left[\mu_{0}^{(\prime)}(\varepsilon)^{\prime}, x+\mathrm{D}^{-1}\right]}
\end{aligned}
$$

according to (4.5) and (4.6), (4.7) is valid.
Theorem 4.3.

$$
\begin{equation*}
\Psi_{l}^{\prime}\left[\mu_{n}^{\prime \prime \prime}(\varepsilon)\right]=\left[\mu_{n}^{(\prime)}(\varepsilon)^{\prime}, \Psi_{i}\right] \quad n=0,1,2, \ldots \tag{4.8}
\end{equation*}
$$

Proof. Since $\Psi_{l}$ is a hereditary symmetry, from (3.6) and (4.7), (4.8) is established.
Theorem 4.4.

$$
\begin{align*}
& {\left[K_{m}, \Phi^{n} 1\right]=(m+1) K_{m+n-1}}  \tag{4.9}\\
& m=1,2, \ldots \quad n=0,1,2, \ldots
\end{align*}
$$

Proof. From (3.1), (4.9) is valid for $n=0$. Assume it is valid for $n=k-1$; we prove it for $n=k$. In fact

$$
\begin{aligned}
{\left[K_{m}, \Phi^{k} 1\right] } & =K_{m}^{\prime}\left[\Phi^{k} 1\right]-\left(\Phi^{k} 1\right)^{\prime}\left[K_{m}\right] \\
& =K_{m}^{\prime}\left[\Phi^{k} 1\right]-\Phi^{\prime}\left[K_{m}\right] \Phi^{k-1} 1-\Phi\left(\Phi^{k-1} 1\right)^{\prime}\left[K_{m}\right]
\end{aligned}
$$

Since $\Phi^{\prime}\left[K_{m}\right]=\left[K_{m}^{\prime}, \Phi\right]$ (Tian Chou 1987), we obtain

$$
\left[K_{m}, \Phi^{k} 1\right]=\Phi\left[K_{m}, \Phi^{k-1} 1\right]=(m+1) K_{m+k-1} .
$$

Lemma 4.5.1.

$$
\begin{equation*}
\left[\Phi^{m} 1,1\right]=m \Phi^{m-1} 1 \quad m=1,2, \ldots \tag{4.10}
\end{equation*}
$$

The proof is by induction on $m$.

Theorem 4.5.

$$
\begin{align*}
& {\left[\Phi^{m} 1, \Phi^{n} 1\right]=(m-n) \Phi^{m+n-1} 1} \\
& m=1,2, \ldots, \quad n=0,1,2, \ldots \tag{4.11}
\end{align*}
$$

Proof. From (4.10), (4.11) is valid for $n=0$. Assume it is true for $n=k-1$; we prove it for $n=k$. In fact

$$
\begin{aligned}
{\left[\Phi^{m} 1, \Phi^{k} 1\right] } & =\left(\Phi^{m} 1\right)^{\prime}\left[\Phi^{k} 1\right]-\left[\Phi^{k} 1\right]^{\prime}\left[\Phi^{m} 1\right] \\
& =\left(\Phi^{m}\right)^{\prime}\left[\Phi^{k} 1\right] 1-\Phi^{\prime}\left[\Phi^{m} 1\right] \Phi^{k-1} 1-\Phi\left(\Phi^{k-1}\right)^{\prime}\left[\Phi^{m} 1\right] 1
\end{aligned}
$$

Since $\Phi$ is a hereditary symmetry, we have (Tao Sun 1989)

$$
\left(\Phi^{m}\right)^{\prime}\left[\Phi^{k} 1\right] 1-\Phi^{\prime}\left[\Phi^{m} 1\right] \Phi^{k-1} 1=\Phi\left(\Phi^{m}\right)^{\prime}\left[\Phi^{k-1} 1\right] 1-\Phi^{m+k-1} 1
$$

then

$$
\begin{aligned}
{\left[\Phi^{m} 1, \Phi^{k} 1\right] } & =\Phi\left\{\left(\Phi^{m}\right)^{\prime}\left[\Phi^{k-1} 1\right] 1-\left(\Phi^{k-1}\right)^{\prime}\left[\Phi^{m} 1\right] 1\right\}-\Phi^{m+k-1} 1 \\
& =(m-k) \Phi^{m+k-1} 1 .
\end{aligned}
$$

which implies (4.11).

Lemma 4.6.1.

$$
\begin{equation*}
\Psi^{\prime}[1]=l(l+1) t \Phi^{I-1} \quad l=1,2, \ldots \tag{4.12}
\end{equation*}
$$

Proof. Since

$$
\Psi^{\prime}[1]=(l+1) t\left(\Phi^{\prime}\right)^{\prime}[1]
$$

what we need to do is just prove

$$
\left(\Phi^{\prime}\right)^{\prime}[1]=l \Phi^{\prime-1}
$$

The proof of (4.12) is by induction on $l$.

## Lemma 4.6.2.

$$
\begin{equation*}
\left[1, \mu_{n}^{(1)}(\varepsilon)\right]=\left(x+\mathrm{D}^{-1}\right) \mu_{n}^{(1)}(\varepsilon) \quad n=0,1,2, \ldots \tag{4.13}
\end{equation*}
$$

The proof is by induction on $n$.

Theorem 4.6.

$$
\begin{align*}
& {\left[\Phi^{m} 1, \mu_{n}^{(1)}(\varepsilon)\right]=\Phi^{m}\left(x+\mathrm{D}^{-1}\right) \mu_{n}^{(\prime)}(\varepsilon)} \\
& m=0,1,2, \ldots \quad n=0,1,2, \ldots \tag{4.14}
\end{align*}
$$

Proof. By (4.13), (4.14) is valid for $m=0$. Inducting on $m$, we have

$$
\begin{aligned}
{\left[\Phi^{k} 1, \mu_{n}^{(\prime)}(\varepsilon)\right] } & =\left(\Phi^{k} 1\right)^{\prime}\left[\mu_{n}^{(\prime)}(\varepsilon)\right]-\mu_{n}^{(\prime)}(\varepsilon)^{\prime}\left[\Phi^{k} 1\right] \\
& =\Phi^{\prime}\left[\mu_{n}^{(\prime)}(\varepsilon)\right] \Phi^{k-1} 1+\Phi\left(\Phi^{k-1} 1\right)^{\prime}\left[\mu_{n}^{(\prime)}(\varepsilon)\right]-\mu_{n}^{(\prime)}(\varepsilon)^{\prime}\left[\Phi^{k} 1\right] \\
& =\Phi\left[\Phi^{k-1} 1, \mu_{n}^{(\prime)}(\varepsilon)\right]=\Phi^{k}\left(x+\mathrm{D}^{-1}\right) \mu_{n}^{(\prime)}(\varepsilon) .
\end{aligned}
$$

## Lemma 4.7.1.

$$
\begin{align*}
& {\left[K_{0}, \mu_{n}^{(1)}(\varepsilon)\right]=\Phi \mu_{n}^{(1)}(\varepsilon)} \\
& l=1,2, \ldots \quad n=0,1,2, \ldots . \tag{4.15}
\end{align*}
$$

The proof is by induction on $n$.

## Theorem 4.7.

$$
\begin{align*}
& {\left[K_{m}, \mu_{n}^{(l)}(\varepsilon)\right]=\Phi^{m+1} \mu_{n}^{(\prime)}(\varepsilon)}  \tag{4.16}\\
& l=1,2, \ldots \quad \quad m=0,1,2, \ldots \quad n=0,1,2, \ldots .
\end{align*}
$$

Proof. From (4.15), (4.16) is valid for $m=0$. Assume it is true for $m=k-1$, we prove it for $m=k$. In fact, by (4.4),

$$
\begin{aligned}
{\left[K_{k}, \mu_{n}^{(\prime \prime}(\varepsilon)\right] } & =K_{k}^{\prime}\left[\mu_{n}^{(\prime)}(\varepsilon)\right]-\mu_{n}^{(\prime \prime}(\varepsilon)^{\prime}\left[K_{k}\right] \\
& =\Phi^{\prime}\left[\mu_{n}^{(\prime)}(\varepsilon)\right] K_{k-1}+\Phi K_{k-1}^{\prime}\left[\mu_{n}^{(\prime \prime}(\varepsilon)\right]-\mu_{n}^{(\prime)}(\varepsilon)^{\prime}\left[K_{k}\right] \\
& =\Phi\left[K_{k-1}, \mu_{n}^{(\prime \prime}(\varepsilon)\right]=\Phi^{k+1} \mu_{n}^{(\prime)}(\varepsilon) .
\end{aligned}
$$

## 5. Lie algebra

Theorem 5.1.

$$
\left[\kappa_{m}^{(\prime)}(\alpha, \beta), \kappa_{n}^{(\prime)}\left(\alpha^{\prime}, \beta^{\prime}\right)\right]=\kappa_{m+n-1}^{(!)}(A, B)
$$

where

$$
\begin{align*}
& A=\alpha \alpha^{\prime}(m-n)  \tag{5.1}\\
& B=\left(\alpha^{\prime} \beta-\alpha \beta^{\prime}\right) l+\alpha^{\prime} \beta m-\alpha \beta^{\prime} n \\
& l=1,2, \ldots \quad m=0,1,2, \ldots \quad n=0,1,2, \ldots
\end{align*}
$$

and $\alpha, \beta, \alpha^{\prime}$ and $\beta^{\prime}$ are constants.

Proof. From (4.9), (4.11) and the relation $\left[K_{m}, K_{n}\right]=0$ (Tian Chou 1987), we have $\left[\kappa_{m}^{(\prime)}(\alpha, \beta), \kappa_{n}^{(\prime)}\left(\alpha^{\prime}, \beta^{\prime}\right)\right]$

$$
\begin{aligned}
= & {[\alpha(l+1) t+\beta]\left[\alpha^{\prime}(l+1) t+\beta^{\prime}\right]\left[K_{l+m-1}, K_{l+n-1}\right] } \\
& +\alpha^{\prime}[\alpha(l+1) t+\beta]\left[K_{l+m-1}, \Phi^{n} 1\right] \\
& +\alpha\left[\alpha^{\prime}(l+1) t+\beta^{\prime}\right]\left[\Phi^{m} l, K_{l+n-1}\right]+\alpha \alpha^{\prime}\left[\Phi^{m} 1, \Phi^{n} 1\right] \\
= & {[A(l+1) t+B] K_{l+m+n-2}+A \Phi^{m+n-1} 1=\kappa_{m+n-1}^{(l)}(A, B) }
\end{aligned}
$$

where constants $A$ and $B$ are given in (5.1).

Theorem 5.2.

$$
\begin{align*}
& {\left[\mu_{m}^{(1)}(\varepsilon), \mu_{n}^{(1)}\left(\varepsilon^{\prime}\right)\right]=0}  \tag{5.2}\\
& l=1,2, \ldots \quad m=0,1,2, \ldots \quad n=0,1,2, \ldots .
\end{align*}
$$

Proof. It is not difficult to check that

$$
\left[\mu_{0}^{(\prime)}(\varepsilon), \mu_{0}^{(\prime)}\left(\varepsilon^{\prime}\right)\right]=0 \quad\left[\mu_{0}^{(\prime \prime}(\varepsilon), \mu_{1}^{(\prime)}\left(\varepsilon^{\prime}\right)\right]=0
$$

Furthermore, (5.2) is evidently established because of (4.8).

Theorem 5.3.
$\left[\kappa_{m}^{(l)}(\alpha, \beta), \mu_{n}^{(\prime)}(\varepsilon)\right]$

$$
\begin{align*}
= & \alpha \sum_{r=0}^{m} C_{m}^{r}[(n+1)!/(n-r+1)!] \varepsilon^{m-r} \mu_{n-r+1}^{(\prime)}(\varepsilon)  \tag{5.3}\\
& +\beta \sum_{r=0}^{l+m} C_{1-m}^{r}[n!/(n-r)!] \varepsilon^{l+m-r} \mu_{n-r}^{(\prime \prime}(\varepsilon) \\
& l=1,2, \ldots \quad m=0,1,2, \ldots \quad n=0,1,2, \ldots .
\end{align*}
$$

Proof. From (4.14) and (4.16), we can obtain
$\left[\kappa_{m}^{(I)}(\alpha, \beta), \mu_{n}^{(I)}(\varepsilon)\right]$

$$
\begin{aligned}
& =[\alpha(l+1) t+\beta]\left[K_{l+m-1}, \mu_{n}^{(l)}(\varepsilon)\right]+\alpha\left[\Phi^{m} 1, \mu_{n}^{(l)}(\varepsilon)\right] \\
& =\alpha \Phi^{m} \mu_{n+1}^{(l)}(\varepsilon)+\beta \Phi^{l+m} \mu_{n}^{(l)}(\varepsilon) .
\end{aligned}
$$

According to (4.2), (5.3) is established.

## References

Tao Sun 1989 J. Phys. A: Math. Gen. 22 3737-42
Tian Chou 1987 Sci. Sin. A 101009


[^0]:    † Present address: Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, Canada H3A 2 T8.

