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Symmetries and their Lie algebra properties for the 
higher-order Burgers equations 

Tao Sun? and  Wei Wang 
Physics Department, Liaoning Normal University, Dalian, People's Republic of China 

Received 28 July 1988, in final form 16 May 1989 

Abstract. A new strong symmetry, two groups of symmetries and their Lie algebra properties 
for the higher-order Burgers equations are presented. 

1. Introduction 

In the preceding paper (Tao Sun 1989) we discussed the symmetries and Lie algebra 
properties of the Burgers equation. A new class of symmetries has been found. It is 
known that the Burgers equation has two strong symmetries CP and 9 (Tian Chou 1987) 

@ = D + U + U , ~  D-' (1.1) 

(1.2) 9 = 2fCP + x + D-' 

and three groups of symmetries 

K ,  =@"KO KO= U, 

7, = @'TO 70=2fU,+1 

U,(&) = q n P " ( E )  P ~ ( E ) = ( U - E )  exp( -D- 'u+&x+e ' t )  (1.5) 
where n = 0 , 1 , 2 , .  . . . 

In this work we discuss the symmetries of the higher-order Burgers equation 

14, = KI = @'U, 1 = 1 , 2 , .  . . (1.6) 
where CP is given in (1.1). To our knowledge, very little is known about the symmetries 
of this set of equations, except that CP has been proved to be a strong symmetry of 
them (Tian Chou 1987). I n  the following we show that there exists a strong symmetry 
9, and two groups of symmetries K ( , ~ ' ( E )  and p: / ) (&) .  Their Lie algebra properties 
have also been identified. 

2. Strong symmetry 

Theorem 2.1. The operator 

9' = ( 1 +  l)tCP'+x+D-' 1 = 1 ,2 , .  . . 
is a strong symmetry for the 1-order Burgers equation (1.6) 
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ProoJ From (2.1) we have 

d z I r , / d r = ( l + l ) @ ' + ( I + l ) t  d@'/dr 

[ K ; , W , ] = ( I + l ) t [ K j , @ ' ] + [ K j , x + D - ' ] .  

Since @ is a strong symmetry, @' is also a strong symmetry (Tian Chou 1987), i.e. 

d@'/dt = [ K j ,  @'I. 
Next, notict that (Tian Chou 1987): 

[ K ; ,  x +  D-']= ( I +  l )@'  1 = 0 , 1 , 2  ) . . .  . 

Therefore 

dzIr,/dt = [ K ; ,  W,] 

which means that 9, is a strong symmetry of the I-order Burgers equation (1.6). 

Theorem 2.2. 

[a", Y,] = n@."-' n = 1 , 2  , . . . ;  1 = 1 , 2  , . . . .  

The proof is by induction of n. For n = 1, we have 

[@,?PI = I. 

Lemma 2.1. 

@'[(x+D- ' )a]  =(x+D- ' )@'[a]+D- 'a+a  D-' 

is valid for any function a. 

Proo$ 

@'[(x+ D-')a] = X U  + ( D - ' a )  +2a  D-' +xu, D-' 

= (x  + D-')@'[ a ]  + D- ' a + a D- '. 

Lemma 2.2. 

{[( D--'u) + U D-'"'' + (@")' [  a]}b - {[(D-'b) + I> D-']@" + (@"')'[b]}a = 0 
(2.4) 

n =o,  1 ,2 , .  . , 
is valid for any functions a and b. 

Lemma 2.3. 

( X  + D-'){ (@',")'[ U ]  b - ( @ ' I ) ' [  b ] ~ }  = (a")'[ ( X  + D-')a]b - ( @ ' I ) ' [  ( x + D-')b]a 
(2.5) 
\ I  

n = 1 , 2 , ,  . . 

is valid for any functions a and b. 

The proofs of lemmas (2.2) and (2.3) are by induction on n. 
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Theorem 2.3. '4'' is a hereditary symmetry, i.e. 

V ; [ * / a ] b  - 9 ; [ V I b ] a  = V / { V ; [ a ] b  -.\Ill[b]a} 1 = 1 ,2 , .  . . (2.6) 
is valid for any functions a and b. 

Proof: Given ( 2 . 1 ) ,  what we need to do is just prove 
(@, ' ) ' [W,a]b  - (@' ) ' [W,b]a  = W I { ( @ ' ) ' [ a ] b  - ( @ " ) ' [ b ] a } .  (2.6a) 

Since @ is a hereditary symmetry, according to Tao Sun (1989, lemma 2.4) and 
(2.5), we obtain 

* l I (@' ) ' [a Ib  - ( @ " ) ' [ b I a }  
= (I+l)t@'{(@')'[a]b-(@')'[b]a}+(x+D~'){(@~)'[a]b-(@')'[b]a} 
= ( @ I ) ' [ (  I + l ) t @ ' a ]  b - ( @ I ) ' [ (  I + l ) t@'b]a  

= ( @ ' ) ' [ P l a ] 6  -(@')'[.\Il/b]a. 
+ ( @ I ) ' [  (x + D - ' ) a ] b  - ( @ I ) ' [  (x + D-') b ] a  

3. Symmetries 

Lemma 3.1. 
K ~ [ l ] = ( n + l ) K , _ ,  n = l , 2 ,  . . .  . (3.1) 

The proof is by induction on n. 

Lemma 3.2. 

dK,/dt = K ;[ K,] m = l , 2  , . . . ;  n = 0 , 1 , 2  , . . . .  (3.2) 

Prooj Equation (3.2) implies that K is a symmetry of the equation U, = Kn2.  Since 
the strong symmetry @ maps a symmetry to a symmetry, it is sufficient to prove (3.2) 
for n = 0, i.e. 

(3.2a) 
Equation (3.2a) is obviously true for m = 1. Assume that it is established when m = k - 1 
and let us prove it for m = k. In fact 

d KO/ d t = K "[ KO] m = l , 2 ,  . . .  . 

K L[ K O )  = @'[KO]  Kk - I + @ K L - I [ &I 
= & K A - I + ( D K , ) ( D - '  & - I ) + @  DKh. 1 

=(D2+2u,+uD+u, ,  D - ' ) K A - ~ = D  KA =dKO/dt .  

Let 
K b ' ) ( C X ,  @)=[Cl(/+ 1 ) f  + p ] @ ' - ' U , + L Y  

= [ a  ( I  + 1 )  t + p ]  K/-I + 
u : I ) ( E ) = ( u - E ) e x p ( - D - ' u + & x + & ' + ' t )  

= [ a ( l +  l ) t + p ] K , + , - , +  a@"I 
K ( , ( ) ( C Y ,  P ) = @ ' K : / ' ( C X ,  p )  

U:('( E )  = * ; p ! / ) (  E )  

1 = 1,2,  . . . n = 0 , 1 , 2 ,  . . .  
where a, p and E are arbitrary constants independent of time and space. 

(3.3) 
(3.4) 
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Theorem 3.1. K!"(a, p )  and p! ' ) (&)  are symmetries for the I-order Burgers equation 
(1.6), i.e. 

dKc'(a, P ) /d t  = Ki[K(,l'(a, p ) ]  (3.7) 

dpk')(&)/dt = Ki[p :" (&)] .  (3.8) 

dKb')(a, P) /d t  = Ki[Kbl'(a, p ) ]  (3.7') 

Prooj In a similar way to the proof of lemma 3.2, what we need to do is just prove 

dp; ')(&)/dt = K i [ p f ' ( ~ ) ] .  (3.8') 

From (3.3) we have 

dKh"(a, /?) /dt= a ( l + l ) K / - , + [ a ( l + l ) t + p l d K , _ , / d t  

Ki[Kh"(ff, p)]  = [Cl( 1)f-k p]Ki[  K/-l]+ a K ; [  11. 
According to (3.1) and (3.2), (3.7') is established. 

it is valid for I = k - 1, we prove that it is established for 1 = k. In fact 
For the case of pi ' ) (&),  (3.8') is obviously valid when I = 1 (Tao Sun 1989). Assume 

K [pCLbk)( )I  = (@ K k -  1 ) ' [pik ) 1 
= @'[ p bk ( & ) ] Kk - 1 + @ K - 1 [ @ bk)(  & ) ] 

= pbkl( E ) & - ,  + [Dpbk'( E ) ] ( D - '  K A  - I )  + exp[Ek( E - l ) t ] @ K ~ - l [ p ~ L - L ) (  E ) ]  

= d phAi(&)/df 

={&+(U - &)[-(D-l K k )  + E k + l ] }  exp(-D-' U E X +  E k + ' f )  

which implies (3.8). 

4. Preliminary theorems 

Lemma 4.1.1. 

The proof is by induction on n. 

Theorem 4. I .  

1 = 1 ,2 , .  * . m = 1 ,2 , .  . . n = 0 , 1 , 2  , . . .  . 

ProoJ: From (4.1), (4.2) is valid for m = 1. Assume that it is true when m = k - 1, we 
prove it for m = k. In fact 

@ A  p,, I / )  (&)=@@"-Ipj()(&) 
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Lemma 4.2.1. 

~ L ' ) ( E ) ' +  D-' ~ L ' ) ( E ) +  p ! , " ( ~ )  D-' = 0 

I = 1,2 ,  * . * n = 0 ,  1 , 2  , . . .  . 
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(4.3 1 

The proof is by induction on n. 

Theorem 4.2. 

@'[PL''(.)l = [PL''(EY3 @I 1 = 1 , 2  , . . . ;  n = 0 , 1 , 2  , . . . .  (4.4) 

Proof: For n = 0 ,  p i ' ) (& )  = e x p [ ( ~ ' + ' -  ~ ' ) f ] p ~ ( ~ ) ,  so (4.4) is true by lemma 4.3 of Tao 
Sun (1989). Assuming it is established for n = k - 1, we prove it for n = k. In fact, by 
(2.3), (4.2)and (4.3) 

[P i 'YE) ' ,  @I = [ ( % P i ' W ) ' ,  @I 
1 

= ( I +  1)t  C ; [ ( k -  1) ! / ( k - r -  1) ! ] E ' - ~ [ ~ L ' L ~ - ~ ( E ) ' ,  @I 
r = O  

+ [ (x + D-')pi'L,( E ) ' ,  @ ]  

= @'[ ( I + 1 ) t @"p ?L 1 ( E ) ] + ( x + D-')@'[  p L'L I ( E ) ]  - p ifL I ( E )' 

= @'[ p i')( E ) ]  - [ p i'! ( E )' + D- ' p :'I ( E  ) + p i;'! ( E  ) D- ' ] 
=@'[p.il'(.)]. 

Lemma 4.3.1. 

(@") ' [Pb"(E)I  = [PL')(E), @"I 1 = 1 , 2  , . . . ;  n = 1 , 2  , . . . .  (4.5) 

The proof is by induction on n. 

Lemma 4.3.2. 

[ph ' ) (~ ) ' ,  X S  D - ' ] =  0 l = l , 2 ,  . . .  . 

Proof: I t  is easy to check that (4.6) is established. 

Proof: Since 

W P P ( E  11 = ( I  + 1) t(@,')'[Pul,"(E 11 
[ ~ L " ( E ) ' ,  W,] = ( I +  l ) t [ p ~ " ( E ) ' ,  @ ) ' ] + [ . L ; , " ( E ) ' ,  x + D - ' ]  

according to (4.5) and (4.6), (4.7) is valid. 

(4.6) 
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Proof: Since 9, is a hereditary symmetry, from (3.6) and (4.7), (4.8) is established. 

Theorem 4.4. 

[K , ,@" l ]= (m+l )K,+ , - ,  

m = 1 ,2 , .  . . n = 0 ,  1 ,2 , .  . . . 
(4.9) 

Proof: From (3.1), (4.9) is valid for n = 0. Assume it is valid for n = k - 1; we prove 
it for n = k. In fact 

[K,, @"I = K;[@kl]-(@kl)'[K,,] 

= K;[@kl] -@'[K,]@k-ll -@(@k-ll) '[K,n]. 

Since @'[Km] = [ K i ,  @] (Tian Chou 1987), we obtain 

[K,, @'"I] = @ [ K , ,  @."-'I] = ( m +  l)Km+."-, .  

Lemma 4.5.1. 

[@"I, 11 = m@"-'l m = l , 2 ,  . . .  . 

The proof is by induction on m. 

Theorem 4.5. 

[@."I, @"I ]  = ( m  -n )@m+n- l l  

m = 1,2,  . . . , n =0,  1, 2 , .  . 

(4.10) 

(4.11) 

Proof: From (4.10), (4.11) is valid for n = O .  Assume it is true for n = k -  1; we prove 
it for n = k. In fact 

[@."I, O h l ]  = (@ml) ' [@hl]-[@hl] ' [@ml]  

= (@.")'[@hl]l- @'[@"l]@h-ll - 111. 

Since @ is a hereditary symmetry, we have (Tao Sun 1989) 

(@")'[@."1]1 - @ ' [ @ ~ ' l ] ( D - ' l =  @(@n') '[@h-' l] l  -@'n+."-ll  

[@"1, @"1] =@{(@")'[@"-'1]1 - (@."-~)'[@"l] l}-@'~'Th-' l  

then 

- - ( m  - k)@"'*"-'l. 

which implies (4.11). 

Lemma 4.6.1. 

~ ; [ 1 ]  = I ( / +  l)r@'-'  / = l , 2 ,  . . .  . (4.12) 
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Pro05 Since 

~ r ; [ i ]  = ( I +  i ) t (@. ‘ ) ’ [~ ]  

(@7’[1] = I @ / - ’ *  

what we need to do is just prove 

The proof of (4.12’) is by induction on 1. 

Lemma 4.6.2. 

[ 1, PI()( E ) ]  = (X + D-’)p;()( E )  n = 0 , 1 , 2  , . . .  . 

The proof is by induction on n. 

Theorem 4.6. 

[Om 1, p ‘,“( E)]  = @“ ( x + D-’)p : I ) (  E ) 

m = 0, 1,2,  . . . n = 0 , 1 , 2  , . . . .  

Pro05 By (4.13), (4.14) is valid for m = O .  Inducting on m, we have 

[Qk l ,  p:l ) (E)]  = ( @ ~ l ) ’ [ p ! / ’ ( E ) ] - p ; ~ ) ( & ) ’ [ @ ~ l ]  

= @’[ p : I ) (  E )I@’ - 1 + @ ( @ - 1 ) ’[ p : I ) (  E ) ] - p !’I( E ) ’[ Q k  1 3 
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(4.12‘) 

(4.13) 

(4.14) 

=@[@‘-‘l, p!,‘)(~)] = @ ‘ ( x + D - ’ ) p : ‘ ) ( ~ ) .  

Lemma 4.7.1. 

[KO, PI(Y41 = @ P m  

1 = 1 , 2  , . . .  n = 0 , 1 , 2  , . . . .  

The proof is by induction on n. 

Theorem 4.7. 

[ K , ,  p;’(&)] = @.“+’p!/ ’(&) 

1 = 1,2,  * .  . m =0,  1 , 2 , .  . . 

ProoJ From (4.15), (4.16) is valid for m = 0. Assume i t  is true for m = k - 1, w 
it for m = k. In  fact, by (4.4), 

n = 0 , 1 , 2  , . . .  . 

[Kh, p!’(41 = K ; [ p ? ( 4 1  -p ; / ’ (E) ’ [~ ’ I  

= @‘[ p ;/’( E 11 KA - - I  + @ K i -  I [ p ( , I ’ ( E  11 - pU.(,(’(E )’[ KA 1 
=@[K/,-l ,  p::’(&)] =@‘+ ‘p ! ’ (&) .  

(4.15) 

(4.16) 

prove 
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5. Lie algebra 

where 

A = aa'( m - n )  

B = (a 'p  - ap ' ) l+ a 'pm - a p ' n  

1 = 1,2, . * . m = 0 ,  1, 2 , .  . . n = o ,  1 ,2 , .  * .  

(5.1) 

and a, p, a' and p' are constants. 

Proof: From (4.9), (4.11) and the relation [K,, K,] = 0 (Tian Chou 1987), we have 

[ K l l ' ( a ,  P ) ,  K I I ) ( ( Y ' ,  @ ' ) I  

= [ a ( [ +  l ) f + P l [ a ' ( l +  l ) t+p ' l [K/+m-,  9 K/+n-Il 

+a ' [a ( l+ l ) f+p][Ki+,_ , ,  @."1] 

+ (Y [ a'( 1 + 1) t + P ' ] [  W"1, K,+, - I ]  + aa '[ @'n 1, cp" 11 

= [ A ( / +  l ) r +  B ] K l + m + n - 2 + A @ m t n - l  1 = K ( "  m + n - I ( A  B )  

where constants A and B are given in (5.1). 

Theorem 5.2. 

[p ; l (& ) ,  pL(nl'(e')] = 0 
(5.2) 

I =  1,2 , .  . . m = 0 ,  1,2 , .  . . n = 0 ,  1,2 , .  . . . 

Proof: I t  is not difficult to check that 

[@%), ph%')I = o  [ & I ( & ) ,  /4')(&')] = 0. 

Furthermore, (5.2) is evidently established because of (4.8). 
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Roo$ From (4.14) and (4.16), we can obtain 

[ K $ ' ( a ,  p ) ,  PL(,I)(&)1 

=[a ( l+ l ) f+P l [K/ , , - , ,  p10(41+a[@)"l,  p%)I 

= a@)"p::,( E )  + p@'+"p.io( E ) .  

According to (4.2), (5.3) is established. 
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